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ABSTRACT

We report on the orbital architectures of Kepler systems having multiple planet candidates identified
in the analysis of data from the first six quarters of Kepler data and reported by Batalha et al.
(2013). These data show 899 transiting planet candidates in 365 multiple-planet systems and provide
a powerful means to study the statistical properties of planetary systems. Using a generic mass-
radius relationship, we find that only two pairs of planets in these candidate systems (out of 761 pairs
total) appear to be on Hill-unstable orbits, indicating ~ 96% of the candidate planetary systems are
correctly interpreted as true systems. We find that planet pairs show little statistical preference to be
near mean-motion resonances. We identify an asymmetry in the distribution of period ratios near first-
order resonances (e.g., 2:1, 3:2), with an excess of planet pairs lying wide of resonance and relatively
few lying narrow of resonance. Finally, based upon the transit duration ratios of adjacent planets
in each system, we find that the interior planet tends to have a smaller transit impact parameter
than the exterior planet does. This finding suggests that the mode of the mutual inclinations of
planetary orbital planes is in the range 1.0°-2.2°, for the packed systems of small planets probed by
these observations.

Subject headings: planetary systems; planets and satellites: detection, dynamical evolution and sta-

bility; methods: statistical

1. INTRODUCTION

Kepler data have recently revealed a windfall of plane-
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tary systems via the transit technique. The Kepler team
is in the process of vetting candidates to rule out false
positives, with a special emphasis on multiplanet candi-
dates, which has the promise of yielding a high-fidelity
(2 98%) catalog of many hundreds of planetary systems
(Lissauer et al. 2012).

Previously, the Kepler team presented planetary candi-
dates discovered in the first four months of mission data
(Borucki et al. 2011, hereafter B11). Contemporary with
the B11 catalog, Lissauer et al. (2011b) (hereafter Paper
I), examined the dynamics and architectures of the can-
didate multiplanet systems. Paper I examined the set
of period ratios, both to identify any systems that ap-
peared to be unstable, and also to determine whether
resonances played a dominant role in their formation
(through trapping) or dynamics (through continued per-
turbation). Another important result was that systems
with many transiting planets are common, suggesting
that the typical multiplicity is large and that their or-
bits tend to lie in a plane to within ~ 20° (the fewer the
typical planet number, the more coplanar the systems
must be) — see also, Latham et al. (2011). Batalha
et al. (2013) (hereafter B13) subsequently identified can-
didates using the first 16 months of data. This paper
updates the above investigations of Paper I to the B13
catalog of candidates and adds two additional studies:
(a) their fidelity as true planetary systems based on the
apparent orbital stability of almost all of the systems and
(b) mutual inclinations of planetary orbits based on their
transit duration ratios.

We begin by defining the sample of planet candidates
(§ 2), in particular how we have chosen which planet can-
didates to omit or update. Next (§ 3.1) we call attention
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to a few closely-packed planetary pairs, and we inves-
tigate possible two- or three-planet resonances in these
systems. We discuss whether the sample of candidates
obeys known orbital stability requirements (§ 3.3) and
implications for their purity as real planetary systems
(§ 3.4). The statistical properties of the distribution of
period ratios is examined in § 4. In § 5, we find that
the transit duration ratios in multiplanet systems limit
the typical mutual inclinations to just a few degrees. We
draw comparisons to the Solar System in § 6. Finally, we
restate the salient results in § 7.

2. THE SAMPLE

Our sample of planet candidates is based on the KOI
(Kepler object of interest) list in the appendix by B13
(Table 9). System numbers are denoted by the integer
part, and individual planets within these systems are de-
noted by the decimal part, of KOI numbers. To study
these systems’ dynamics, we adopt stellar masses ob-
tained from the surface gravity (its logarithm is denoted
log g) and stellar radius reported by B13. We omitted a
number of candidates from this list for various reasons:
(a) planets with uncertain transit periods from section
5.4 of B13; (b) those mentioned as suspect in section
1 of Paper I; (¢) KOI-245.04, which has low transit S/N
(11.5) and poor reduced x? = 2.11; and (d) planet candi-
dates that are based on single transits since their periods
are too uncertain for the purposes of this paper (these are
denoted by negative periods in B13). Apart from the B13
planet candidates, several groups have found additional
planet candidates but we do not include these candidates
here!8.

For our analysis, we revised the stellar and planetary
properties of some candidates, as follows. We updated
the period of KOI-2174.03 as described in § 3.1. KOI-338
had a large change in stellar radius (1 — 19 Rg) from the
B11 catalog to the B13 catalog, due to log g determina-
tion using a newer spectrum (12 Nov. 2010). However,
there is no signal of pulsations that generally accompa-
nies a giant star, and the transit durations match much
better with the radius of a dwarf star. These facts sug-
gest that either the spectroscopic result is in error, or
the candidates are planets orbiting a background dwarf.
Therefore, we obtain stellar parameters for this system
using the Brown et al. (2011) analysis of the photometry
in the Kepler Input Catalog, which yields M, = 0.96 M,
and R, = 1.65 Ry, and adjusted the planet candidate
sizes accordingly.

We also made a correction to some planet sizes due
to apparently ill-conditioned fits. The issue is that some
of the B13 fits have impact parameter b above 1, along
with a very large value of the planet radius R,. The
two conspire such that the planetary disk only skims the
stellar disk, and it gives a shallow transit. We do not
believe the parameters are reliable in these cases, but
that the depth is more reliable for estimating R,. For the
three cases in multi-transiting candidate systems where

18 For instance, Ford et al. (2012) found KOI-1102.03, 1102.04
and Fabrycky et al. (2012) found KOI-952.05. The Kepler team
continues to add to the list of planet candidates and is vetting the
results of the transit search through the full dataset.

this occurs, namely KOI-601.02, 1426.03, and 1845.02,
we adopted R, = R, (Depth)'/2, using stellar radius R,
and Depth reported by B13 in Table 9. This effect was
found present in B11 for KOI-961, and Muirhead et al.
(2012) refined the stellar size and mass and the sizes of
the planets; we adopt their parameter values in this case.

With these changes from B13, the planet candidate
systems are 1409 targets with a single candidate, 243
double systems, 85 triple systems, 28 quadruple systems,
8 quintuple systems, and 1 sextuple system. This implies
a total of 365 candidate multiple-planet systems with 899
candidate planets. Parameters of these planets and their
host stars are given in Table 1, which ultimately derive
from B13 (Table 9). Overall, the number of multiple-
planet systems approximately doubled from Paper I, and
the largest fractional increases were seen in the quadru-
ples (8 — 28) and quintuples (1 — 8). We display the
periods and sizes of planets in triple systems and above
in figure 1.

3. DYNAMICS OF THE NEW SYSTEMS

In order to make inferences about the dynamical inter-
actions of the planets, we convert their measured radii to
masses according to the mass-radius relationship given
in Paper L. It is subject to the caveats that (a) the mea-
sured planetary radii, R,, scale with the stellar radii,
which are not always accurately known, and (b) we an-
ticipate real planets have a diversity of structures, lead-
ing to a range of masses at any particular radius (e.g.,
Wolfgang & Laughlin 2012). Nevertheless, we model the
systems using the simple power-law relationship for plan-
etary masses

M, = Mo (Ry/Ro)®, (1)

where Mg /Rg are the mass/radius of the Earth, o =
2.06 for R, > Rg and o = 3 for R, < Rg. The choice
of «a for large planets, identical to the assumption we
made in Paper I, is motivated by Solar System planets:
It provides a good fit to Earth, Uranus, Neptune, and
Saturn. Continuing that power-law below Earth would
mean smaller, rocky planets are more dense, which is not
likely, whereas our choice of a = 3 yields planets with a
density equal to that of Earth.

A length scale relevant for dynamical interactions is
the mutual Hill radius, given by:

Min + Mout :| 1/3 (ain + aout) (2)
3M, 2 ’

where the two planets are indexed by “in” and “out”,
M are their masses and a are their semi-major axes, and
M, is the mass of the stellar host. Relevant to stability
(see § 3.3 below) is the separation of their orbits in units
of their Hill radii:

A = (aout — ain)/RH. (3)

In dynamically modelling the systems, we take as initial
conditions circular orbits with the periods and phases
inferred from the transit observations (Table 1), with the
stellar mass of B13.

The orbital period ratios (used in § 4) and A for all 365
Kepler multiple-candidate systems are given in Table 1.

we |
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Figure 1.

Systems of three or more planets. Each line corresponds to one system, as labelled on the right side. Ordering is by the

innermost orbital period. Planet radii are to scale relative to one another, and are colored by decreasing size within each system: red,

orange, green, light blue, dark blue, gray.

Some planetary systems are especially tightly packed, or
lie close to three-body resonances, and we individually
discuss these. The stability properties of the ensemble
of multi-transiting systems can be used to characterize
the fidelity of the sample, i.e. determine whether these
candidate systems have the correct periods and should
be interpreted as multiple planets around the same star.
We pursue these two lines in the following.

3.1. Closely-spaced planets

The most closely spaced pair of new candidates are
2248.01 and 2248.04 in KOI-2248 with a period ratio of
1.065. This pair is unlikely to be stable if both these
planets are orbiting the same star (due to the separation

in terms of Hill radii is likely small; see below). The same
situation is discussed in Paper 1 for KOI-284, where can-
didates 284.02 and 284.03 have a period ratio of 1.038.
In systems such as this, where transits are detected with
a low signal-to-noise ratio, we must consider the possibil-
ity that some subset of the transits were not detected, or
spurious transits were detected, thus the observed period
is an alias of the true one. We checked aliases at periods
1/4, 1/3, 1/2, 2, 3, and 4 times the nominal period by
measuring the depth of the signal at locations implied by
those periods. For the KOI-2248 system, the signals are
consistent with the reported periods, and inconsistent
with these possible aliases.

Likely alternative explanations for this system are (a)
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one or both candidates is actually a blended eclipsing bi-
nary or (b) the two are true planets, but orbiting differ-
ent members of a wide binary star (Lissauer et al. 2012,
2014). Following Steffen et al. (2010), we can consider
the ratio of orbital-velocity normalized transit durations:

1/3
Tdur,in/jjin/ (4)
ﬂlur,out/Polu/tg

&=

where Tqy: is the transit duration and P is the orbital
period'®. If this quantity is near unity, it implies that
the planets are orbiting stars of roughly equal density
(perhaps the same star; Lissauer et al. 2012). For the
unstable pairs in KOI-284 and KOI-2248, the value of ¢
is 0.96 and 0.97 respectively; this is sufficiently close to 1
that this test fails to give evidence of the pairs orbiting
different stars. However, it suggests that if the planets
are orbiting different stars in a physical binary, then the
two stars may be similar and resolvable with high quality
imaging — this has already been achieved for KOI-284
(Lissauer et al. 2012).

The next closest pair is KOI-2174, with a period ratio
1.1542 between 2174.03 and 2174.01. We performed the
same alias check described above. In this case, every
other transit of the smallest planet 2174.03 (at period
7.725 days) is shallower and is marginally consistent with
zero (509 & 57 ppm versus 105 £ 63 ppm). Therefore
we adopt an ephemeris with the period doubled (BJD
= 15.4502 x E+245509.8024, where FE is an integer), in
Table 1.

As we continue to wider period ratios, we no longer
find reason on stability grounds to question the hypoth-
esis that the systems are truly multiple planets orbiting
an individual star. We now discuss other dynamically
interesting systems that are closely packed. KOI-1665
has a period ratio 1.17219 between 1665.01 and 1665.02.
These are small candidates (1.2 and 1.0 Rg) around a
solar-type star, so the alias check above is not as power-
ful. Nevertheless, it raises no suspicion of the measured
periods being incorrect. Given the planets’ small sizes,
they are likely to have low masses and even this exteme
period ratio is stable in the Hill sense (see § 3.3, below).
KOI-262 (Kepler 50) has a nearly exact 6:5 commensu-
rability, with a period ratio of 1.20010 £ 0.00003. The
planetary nature of this system was confirmed by transit
timing variations (Steffen et al. 2012). All other planet
pairs have period ratios > 1.25. In fact, in § 4, we note
that there may be a significant excess of planet pairs just
wide of that period ratio, with planet sizes between Earth
and Neptune. Kepler-11b and ¢ (Lissauer et al. 2011a)
are confirmed examples of this variety.

3.2.  Three-body resonances

We also checked for potential three-body resonances
among planets in systems of higher multiplicity. Though
we do not investigate whether these resonances are over-
abundant relative to a random distribution, we point
them out because they have a dynamical effect on the
systems. Following Quillen (2011), we searched for small
values of the frequency

f37b0dy = pfin - (p + q)fmid + qfout7 (5)

(73]

19 When referring to pairs of planets, we use “in” and “out” to
denote the inner and outer planets, respectively.

where fin, fmid, and fou are the orbital frequencies (in-
verse periods) of the innermost, middle, and outermost
planets, respectively, and p and g are integers. We recov-
ered the possible resonant chain of KOI-730, four planet
candidates with period ratios near 4:3, 3:2, and 4:3, as
described by Paper I. We also found KOI-2086 (Kepler-
60, Steffen et al. (2012)), whose three planets are in or
near an even more closely packed chain of first-order res-
onances, 5:4 and 4:3, and where both neighboring pairs of
planets orbiting KOI-2086 are offset by the same amount
from the two-body resonances:

4fin — 5 fmia = —0.10 & 0.03 degrees day™*,  (6)
3fmid — 4fous = —0.09 & 0.02 degrees day ™ *,  (7)

such that the combined three-body frequency f3_pody,
with (p,q) = (1,1), is —0.004 £ 0.009 degrees day .
This is considerably closer to zero than its pair of two-
body equivalents, which suggests that this resonance
chain could have dynamical significance. This fact places
this system, in terms of its proximity to a multibody
resonance chain, between KOI-730 and KOI-500. In
the latter, the outer four planets are more significantly
offset from the two-body resonances, yet are consis-
tent with a three-body resonance (as described in Pa-
per I). A final case of a possible three-body resonance is
KOI-720 with planet pairs that are relatively far from
two-body resonances, yet the planets 720.04, 720.01,
and 720.03 have f3_pody = 2fin — 5fmid + 3fout, of
0.00 + 0.02 degrees day'. This is despite another can-
didate planet (720.02) orbiting among them, with an or-
bital period greater than that of 720.01 but less than that
of 720.03. We numerically integrated Newton’s equa-
tions to model the four planets of KOI-720, starting them
on circular orbits with the periods and phases inferred
from the transit observations (Table 1), a stellar mass of
0.72M ¢, and with equation 1 giving planet masses of 2.0,
7.5, 6.8, 8.0Mg, from the inner to outer planet. The com-
bination of mean motions 2\, — 5Amiqd + 3Aout librated
around 180°, with a period of 300 years, and with an
amplitude of 30°. Thus, this three-body resonance has
dynamical significance for this system, and a dedicated
study of these effects seems warranted.

3.3. Stability of Multiple-Candidate Systems

Next, we investigate stability of the candidate systems.

As noted in Paper I, for two-planet systems there ex-
ists an analytic Hill-stability criterion, where the planet
orbits are unable to cross (e.g., Marchal & Bozis 1982).
If the two planets begin on circular orbits with an orbital
separation:

A > 23, (8)

then they are Hill stable (Gladman 1993). Values of A
are given for the observed pairs in Table 1. Only KOI-
284 and KOI-2248 (see § 3.1) host pairs of planet can-
didates that contradict this criterion. In particular, all
two-planet candidate systems obey this stability crite-
rion, so we judge them to be plausibly stable.

We are aware of no analytic stability criterion for the
systems with more than two planets. However, in sys-
tems of three or more planets, the instability time scale
generally increases with separation, as in the two-planet
case (Chambers et al. 1996; Smith & Lissauer 2009). In
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Figure 2. Separation of inner and outer pairs of triples (and ad-
jacent 3-planet subsets of systems of three or more planets), in
units of the mutual Hill separation. The symbols denote planets
in triples (red triangles), quadruples (purple squares), quintuples
(orange pentagons), the sextuple (green hexagons), and the Solar
System (black circles). Systems with individual pairs that are un-
stable are the gray area: a triangle denoting KOI-284 and two
squares denoting KOI-2248. Other systems show three planets
with particularly close spacing (below the dashed line, which is
criterion 9), but these were numerically integrated and found to be
long-term stable.

Paper I, we numerically integrated all of the systems with
more than two planets for 10'° orbits of the innermost
planet using MERCURY (Chambers 1999). We started
from circular, coplanar orbits and used our power-law
mass-radius relationship. In addition to each pair obey-
ing two-planet stability criteria, we suggested a conser-
vative heuristic criterion,

Ain + Aout > 187 (9)

where the “in” and “out” subscripts pertain to the in-
ner pair and the outer pair of three adjacent planets.
This latter criterion does not assure stability (particu-
larly if planets are eccentric), though it suggests there
is no reason to suspect the system would be unstable,
based on the planet sizes and periods sensed by transits.
In Figure 2, we plot the As for inner and outer pairs
of threesomes. Systems satisfying criteria 8 and 9 we
do not analyze further, but the other systems may be
unstable and call for further analysis. Most of these sys-
tems were already examined in either Paper I or Lissauer
et al. (2012). We numerically integrated the remaining
three, KOI-620 (Kepler-51, Steffen et al. (2012)), KOI-
1557, and KOI-2086 (Kepler-60), as described in Paper
I. We found them to be plausibly stable. That is, start-
ing on circular, coplanar orbits matching the phase and
periods of the data, they suffered neither ejection, nor
collision, nor a close encounter within 3 mutual Hill radii
over a timespan of 10'? orbits of the innermost planet
(usually of order 10® years). We also integrated KOI-961
for the same duration using the masses of Muirhead et al.
(2012), and found them to be similarly stable.

The only new system that is unstable was KOI-2248,
discussed in §3.1. Using the Burlisch-Stoer integrator

in MERCURY, the planets began violent gravitational
scattering in several synodic time scales. Clearly, this
system needs a qualitatively different understanding for
its architecture, as noted above. One final system where
at least one new planet appears close to instability is
KOI-707 = Kepler-33. An analysis of the stability of this
system was carried out in the discovery paper (Lissauer
et al. 2012), so we performed no additional analysis here.

These outcomes of our stability analysis are for the
power-law M,—R,, relationship (eq. 1) with oo = 2.06. To
see how many systems would be unstable if the planets
were denser, we considered a larger a value for plan-
ets below 2Rg (an estimate of the Super-Earth / mini-

Neptune boundary). We looked for A < 2+/3 for any
adjacent pair. Below 2Rg, for any a below 6.9, no ad-
ditional systems violate Hill’s stability given circular or-
bits. Therefore all these planets may have an Earthlike
composition, for which « ~ 3.7 (Valencia et al. 2006),
and not violate stability limits.

For planets larger than 2Rg, we may also consider
denser planetary structures, by varying a. No addi-
tional systems display instability for a < 2.6 [i.e., M, =
Mg (R,/Rg)?]. For the slightly higher value of v = 2.7,
the pair of planets of KOI-523 and the outer two planets
of KOI-620 would be unstable, according to our numer-
ical integrations. In KOI-523, the planets would have
(mass, radius) of (0.99Mnep, 0.72Rnep) and (1.99Mgay,
0.74Rgat), i.e. a Neptune-mass planet that is 2.6 times
as dense as Neptune, and a planet twice as massive as
Saturn but that occupies less than half of Saturn’s vol-
ume. In KOI-620, the planets would have (mass, radius)
of (1.16 Mgas, 0.60Rgs;) and (1.44Myyp, 0.86Rg): more
massive, yet much smaller versions of the Solar System’s
gas giants. Such a large a would imply an extreme den-
sity for gas-giant planets, even exceeding that of the core-
heavy transiting planet HD 149026 (Sato et al. 2005).
From this exercise, we see that our conclusions about
stability are not sensitive to our adopted masses. Con-
versely, stability considerations give us little useful con-
straint on these planets’ physical structure.

To summarize this stability study, for all the pairs of
planet candidates, only two are suspected to be unsta-
ble on million-year timescales given low eccentricities and
inclinations: KOI-284 and KOI-2248. Higher multiplic-
ities do not appear unstable either, based on numerical
integrations. Using a mass-radius relationship favoring
high density, a few more systems could be unstable. We
repeat the caveat that we have only considered instabil-
ity while using initially planar, circular orbits; if these
systems contain planets in eccentric orbits, they would
likely be less stable.

3.4. Fidelity of Multiple-Candidate Systems

Morton & Johnson (2011) have emphasized that planet
candidates from Kepler, once properly vetted using in-
dicators in the data itself, tend to be highly reliable (>
90%), and Lissauer et al. (2012) extended and strength-
ened this statement for candidate multiple-planet sys-
tems. The density of background eclipsing binaries is so
low, and the small depth and detailed shape of transits
is unlikely to be mimicked because of the photometric
precision of Kepler, that more than one pattern of tran-
sit signals on a single target are unlikely to occur via a
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blending of stellar eclipses with additional stellar light.
Moreover, Kepler’s photometric precision and centroid
analyses means transit events occurring on background
stars must lie very near the target star, in projection,
which is unlikely.

We can now address the statistical reliability of Ke-
pler’s multiplanet candidates from a new and indepen-
dent angle. With so few candidate planetary systems
showing instability (2 out of 761 pairs, including the
higher-order multiples), we expect most of these candi-
date systems are real planetary systems. Consider the
possibility that pairs are “split multis,” defined as a sys-
tem that appears to be a pair of planets around a star,
but the events are actually split into more than one sys-
tem. The most likely alternatives are (a) one or both
members of the pair of planetary candidates is a blended
eclipsing binary, or (b) both planet candidates are plan-
ets, but they orbit different stars (Lissauer et al. 2012).
Such cases need not obey stability constraints. There-
fore we can estimate an expected fraction of apparently
unstable systems, given the hypothesis that all these can-
didate systems are split multis.

If we draw two planets from the (P, M,/M,) values of
all the planet candidates in multis, and consider whether

that pair would be stable if in the same system, A < 2v/3
occurs in 25,867/403, 651 ~ 6.4% of the draws (the inte-
ger numbers are computed from sampling all the possible
pairs). That is, one would expect 48.8 pairs to be un-
stable over the whole set of 761 pairs. Using the Poisson
distribution, to have found two or fewer unstable pairs
given the expectation value A = 48.8 has a tiny proba-
bility of 8 x 10719,

On the other hand, if only a fraction f of the systems
are split multis, then the expected value of apparently
unstable systems falls to Af. Given that only two sys-
tems in our sample appear to be unstable, we can place
Bayesian constraints on the fraction f. Let us take a
prior probability distribution of f which is uniform from
0 to 1: p(f) = 1. Then we can apply Bayes’ theorem to
estimate the probability of f given the observations:

P(fldata) = —Ludatalf) (10)

[ df'P(datal 1)’

where P(data|f) is the probability of the data given f
and f’ is an integration variable used to determine the
normalization. The only information we use (i.e., the
“data”) is that there are two apparently unstable sys-
tems. This probability distribution is given in figure 3,
which shows a mode of 4.1% and a wide range of possi-
ble fractions: the 95% credible interval is 1.3% — 14.7%.
These estimate are marginally larger than the < 2% of
the candidates in multiple systems not being true plan-
ets estimated by Lissauer et al. (2012). We note that for
the present estimate, we are counting planets that are
around two different stars in a physically bound binary
as a split multi, which as discussed in § 3.1, is likely to
account for one of our unstable pairs, KOI-284, and may
well account for the other, KOI-2248.

These estimates are based on drawing an ensemble of
P and Mp/M* values, which were in turn assumed to
follow certain distributions, so let us examine the ro-
bustness of the conclusions to varying those assumptions.
First, we chose a period distribution P matching the

probability of 2 apparently unstable

0 1 1 I
0.00 0.05 0.10 0.15 0.20
fraction of split multis, f

Figure 3. Normalized probability distribution of the fraction
of “split multis,” f. Assuming a uniform prior probability on f,
this posterior probability function is derived by Bayes’ theorem
(equation 10), conditioned on the “data” that two observed pairs
are Hill-unstable out of 761 possible pairs.

planet candidates in multiple systems. This distribution
nearly matches the single-candidate period distribution,
so this is appropriate if the split multi hypothesis is that a
pair of planets are actually singles around hosts that are
blended together. However, this distribution is narrower
than the detached eclipsing binary distribution, which
may be blended into some of the targets to produce the
split-multi signal. To explore this, we selected M, /M, as
above (a reflection of the distribution of observed depths)
but replaced the periods by two draws from the list of
eclipsing binaries labeled “detached” by Slawson et al.
(2011). This was done in a Monte Carlo fashion, re-
sulting in an unstable fraction A\/761 = 5.07% = 0.04%.
Given that this expectation is lower than above, the frac-
tion of split multis would need to be higher in order to
produce two apparently unstable systems: assuming the
periods are drawn from the eclipsing binary distribution,
the 95% credible interval of f spans 1.7% — 18.6%. The
second assumption is the particular mass-radius relation-
ship we adopted, which gave M,/M,. If the planets are
actually denser than assumed, more systems would be
deemed unstable. Above we tested the sensitivity of our
stability results to varying the mass-radius relationship
for the known systems, and we found that extreme den-
sities are needed for any additional planetary systems to
be unstable. For these random pairs, the number of un-
stable systems expected would vary smoothly with their
assumed masses, and hence the range of f would vary as
well.

By considering stability, we have seen that ~ 96%
of the pairs of multi-transiting candidates are actually
planets around the same star. Recall that this estimate
is independent of that by Lissauer et al. (2012), who
used binary statistics to estimate that in fully vetted
systems, > 98% are real planets. In the following sec-
tions we rely on such high fidelity, assuming that all the
systems are real as we characterize their architectures.
Because of their apparent instability, from this point on
we cull KOI-284.02, KOI-284.03, KOI-2248.01, and KOI-
2248.04. KOI-284 becomes a single-planet system and is
not included in the analysis, and KOI-2248 becomes a
two-planet system and is analyzed as such.
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4. PERIOD RATIO STATISTICS

In figure 4 we plot a histogram of the period ratios
(P = P,ut/Pun) of all pairs, not just adjacent pairs, in all
systems. It spans a wide range, from hierarchical config-
urations to the edge of stability. There is an apparent
cut-off interior to the 5:4 resonance, however KOI-262
(Kepler 50, Steffen et al. (2012)) is a known system near
6:5 and KOI-277 (Kepler 36, Carter et al. (2012)) is near
7:6 (though it was not included in this study since the
smaller planet was not identified in B13). The existence
of these two systems show that this region interior to the
5:4 resonance is not empty. As can be seen in figure 4,
the main conclusion of Paper I remains: The vast ma-
jority of planet pairs are not in resonance. However, as
resonances do have dynamical significance, we address
their statistical properties in this section.

To study the properties of first-order resonances, we
compute the (; variable introduced in Paper I:

G1=3 (7311 — Round [7311D : (11)

which describes the distance a pair of planets is from a
first-order resonance. The variable (; has a value 0.0
when the period ratio is P = (j + 1):7, i.e., first-order
resonances and its “neighborhood” extends to —1 and
+1 at the adjacent third-order resonances interior and
exterior to the first-order resonance, or at (3542):(35—1)
and (35 + 4):(3j + 1), respectively. In figure 5 we plot
the histogram of (y, with all values of j and all planetary
pairs contributing. As in Paper I, we find an excess of
planet pairs with —0.2 < (3 < —0.1, i.e., pairs of planets
prefer to be just wide of first-order resonances.

We compare the observed |(;| distribution to a random
distribution, which is uniform in the logarithm of period
ratios, via a Kolmogorov-Smirnov (K-S) test. The null
hypothesis is that period ratios are smoothly distributed,
e.g. that they do not occur more often near ratios of in-
tegers (which correspond to dynamical resonances). A
significant difference in these distributions is detected
with p-value = 1.4 x 1073, which implies that the distri-
bution is peaked within a few percent of the first-order
resonances. With the addition of the new systems, this
number is little-changed from that of Paper I (where it
was 1.2 x 1073). In Paper I it was found that a dif-
ferent variable, (5, hinted that second-order resonances
might be distributed similarly (p-value 0.046). However,
we find with this expanded sample that |(3] is now more
consistent with a logarithmically-uniform distribution of
period ratios, with K-S test p-value = 0.082. Neverthe-
less, some specific systems (e.g., KOI-738 = Kepler-29,
Fabrycky et al. 2012) are in or near dynamical second-
order resonance. We describe a more general formalism
for the ¢ variable in appendix A, which gives context to
our choice of equation (11) and may be useful in future
investigations of the statistics of resonance.

Let us explore this preference for first-order resonances
further. First, we compare the observed |¢;| distribu-
tion to a random distribution in the neighborhood of
2:1 (between 7:4 and 5:2). The distributions do differ,
with a p-value of 0.031; however this has weakened from
0.00099 (in Paper I) with the expanded sample consid-
ered here which includes more small planets. The more
important effect contributing to the first-order resonance

result is that systems in the neighborhood of 3:2 (be-
tween 10:7 and 8:5) tend to be near 3:2; |(;| differ from a
random distribution in this neighborhood with a p-value
of 0.0071. Looking at panel (a) of figure 4, the global
peak is just wide of the 3:2 resonance; a comparatively
smaller peak exists just wide of 2:1. The peak at 3:2 ap-
pears to be a true excess of systems where the integrated
population near the 3:2 remains above the baseline. On
the other hand, the peak just wide of 2:1 contains only
slightly more pairs than the trough just narrow of the
2:1 is missing, possibly indicating that near the 2:1 res-
onance planetary orbits are “redistributed” from where
they nominally formed.

For a better view of these resonances, we plot the pe-
riod ratios of individual planet pairs near 1.5 and 2.0 in
panels (b) and (c), respectively, of figure 4. Just wide of
1.5, we note a dense cluster (spanning 1.505 to 1.520 for
R, < 3.0 Rg). A similar over-density wide of 2.0 is ap-
parent, but it is considerably more diffuse. These are the
main features that imply |(1] is not evenly distributed.
In these panels, we see more clearly the lack of pairs just
narrow of the resonances, particularly for the 2:1 reso-
nance. In both cases, this gap may be slightly wider
at larger planet sizes. Insofar as planet masses correlate
with planet radii, this feature may result from resonances
being wider for more massive planets. To actually gener-
ate these gaps in the period ratio distribution, additional
forces need to be invoked. These may simply be gravita-
tional scattering, as in the case of the Kirkwood gaps in
the asteroid belt, where a resonance chaotically pumps
up the eccentricity (Wisdom 1983), and the body scat-
ters off other planets and is removed from the resonance.
Chaos was also noted by Murray (1986) in the 3:2 and
2:1 resonances at low eccentricity, which might be suf-
ficient to produce the gaps in figure 4, panels (b) and
(c). Another possibility is the action of tidal dissipation
in the inner planet, pulling it towards the star and in-
creasing the period ratio (Novak et al. 2003; Terquem &
Papaloizou 2007). Yet another possibility is that, while
the pair is still embedded in a gaseous disk, one planet
may excite density waves at its resonance location that
interact with the other planet, preventing resonance cap-
ture (Podlewska-Gaca et al. 2012).

Last, we consider whether the pairs of planets near
first-order resonances are statistically closer to resonance
than would be expected with random spacings. For in-
stance there are KOI-730 (4:3, 3:2, 4:3), KOI-2086 (5:4,
4:3), and KOI-262 (6:5), which we have already dis-
cussed. In addition, there is KOI-1426.02/1426.03, which
are gas giants near the 2:1 resonance. All these cases lie
in the region |¢1| < 0.05, however, they do not cluster
near (7 ~ 0 significantly more than random. Thus, while
these pairs appear to be unusually close to exact reso-
nances (0P /P < 0.001) and their dynamics is likely dom-
inated by those resonances, they may simply be members
of the smooth distribution of period ratios. If true, this
would indicate that they are not necessarily the product
of differential migration that would produce an excess
population near resonance.

In systems with multiple, adjacent first-order reso-
nances, the candidates are more likely to be bone fide
planets (Paper I). Taking as the null hypothesis a uni-
form spacing in log P (i.e., that near-resonant locations
are not preferred), the distribution of ¢; is nearly uni-
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Figure 4.

Period ratio statistics of all planet pairs. Panel (a): Histogram of all period ratios in the sample (i.e., pairwise between all

planets in higher order multiples, not just adjacent planets), out to a period ratio of 4. First order (top row) and second order (lower row)
resonances are marked. The mode of the full distribution is slightly wide of the 3:2 resonance, and there is an asymmetric feature near the
2:1 resonance. There are few systems interior to the 5:4 resonance. Panel (b): Planetary radii versus the period ratio for planetary pairs
near (0.04P) the 3:2 resonance. Both radii for each pair are plotted. Panel (c): same as panel b, but near (within 0.04P) the 2:1 resonance.
Triangles denote planet pairs that are not adjacent, or in other words have an intervening transiting planet.

257

=z
ot ‘ ‘
—-1.0 -0.5 0.0 0.5 1.0
¢
Figure 5. Histogram of (1, a variable describing the offset from

first-order resonances (eq. 11), for all planetary pairs in the neigh-
borhood of a first-order resonance, i.e. with a period ratio between
1 and 2.5. The spike between —0.1 and —0.2 means that period
ratios just wide of first-order resonances are overpopulated relative
to a random and even distribution.

form, indicting that two adjacent period ratios have
|€1,in] +1¢1,0ut| less than or equal to a small value = with
a probability p ~ 2%/2. (This is actually conservative
estimate, as a logarithmic distribution of log P yields a
slightly lower probability than a uniform distribution at

small ¢;.) For the case of KOI-2086 (Kepler 60), the
values of the two adjacent spacings are (; i, = —0.0324
and (i out = —0.0276. Thus, such systems would be this
close to a first-order resonant chain only p = 0.18% of
the time.

Given n = 169 sets of three adjacent planets, the
expectation value that at least one of them will show
such a close chain is 1 — (1 — p)™ = 26%. There-
fore, KOI-2086’s chain is not unexpected even if plan-
etary pairs do not prefer resonances. Having 4 planets
in a resonant chain would be less expected, and having
[€1,in| + [€1,mid| + [¢1,0ut| (where subscript ‘mid’ refers to
the middle pair) less than or equal to = occurs with prob-
ability p ~ 23/6. For KOI-730, (1 ,in = —0.0123, (1 mia =
—0.0186, (1 out = —0.0063, and thus p = 8.6 x 107S.
There are n = 47 sets of 4 adjacent planets, so the ex-
pectation value that at least one would show such a chain
is1—(1—p)™ =0.04%; i.e., a multi-resonant chain like
that in KOI-730 is very unlikely if the orbital periods of
planet candidates with a common host star were com-
pletely independent.

5. DURATION RATIO STATISTICS AND COPLANARITY

The durations of planetary transits were recognized to
be a source for information on orbital eccentricity well be-
fore the Kepler launch, as the eccentricity causes the or-
bital speed to differ from the circular case, and transit du-
ration is inversely proportional to projected orbital speed
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(Ford et al. 2008). Using the B11 KOI catalog, Moor-
head et al. (2011) performed an analysis of the statistics
of durations and found evidence for moderate eccentric-
ities among small planets. This result required knowl-
edge of the stellar masses and radii. Several authors
(Ragozzine & Holman 2010; Kipping et al. 2012) have
also pointed out that the properties of the star (most di-
rectly, its density) can be constrained by the durations
and ingress and egress time of the transits, especially in
systems with multiple planets. In such cases no detailed
stellar model is needed, and constraints on the eccen-
tricities of the planets are by-products. Finally, it has
been noted that the relative transit durations of planets
present in the same lightcurve can be used to validate
them as planets around the same host star (Morehead
et al. 2011; Lissauer et al. 2012).

5.1. Duration ratios: method

Here we assume the planetary candidates are in true
systems orbiting the same star, and we investigate how
the distribution of duration ratios depends on copla-
narity. In the limit that all the planetary orbits within a
system are circular and coplanar, the impact parameters
b and semi-major axes a have the relationship:

bout /bin = Gout/ain  [coplanar, circular], (12)

where “in” signifies an interior planet and “out” signi-
fies an outer planet. Thus we expect that by, will be
larger than b;, in systems where both planets are close
to coplanar and both transit. At the other extreme, plan-
ets around the same star may be sufficiently misaligned
to destroy such correlations, which requires a typical mu-
tual inclination ¢ > R, /a, where R, is the host’s radius
and a is a typical semi-major axis. In that case, both
bin and by, would be drawn from the same distribution,
and by, would be larger than b,y half the time. Such a
cases have been observed, for instance: in the Kepler-11
e/g and Kepler-10 b/c pairs, the observed oyt is smaller
than that given by equation (12), and the orbits must
deviate from coplanarity by at least 1° and 5°, respec-
tively, for these particular pairs. Thus we expect the
distribution of impact parameters can help us determine
the distribution of mutual inclinations.

We do not have sufficiently accurate stellar properties
or good knowledge of impact parameters themselves to
perform such comparisons directly. However, transit du-
rations Tgyr, from first to fourth contact, are generally
well-measured and are ~ 2((1+7)2—b?)"/2 R, /voyp,, where
r = R,/R, and v, oc P71/3. Therefore for each planet
in a system, the function ((1+7)2—b%)'/2 is proportional
to Tyue/P'/?. The ratio of this latter quantity for the
pair of planets, £ (eq. 4), is the quantity that is precisely
measured and is sensitive to the mutual inclination of the
orbits through their relative impact parameters. Given
the distribution of by, of inner planets will be biased to-
wards smaller values if the systems are nearly coplanar,
and in most cases r < 1, we expect the £ to be greater
than 1 for nearly coplanar systems. In the limit that
misalignment removes impact-parameter correlations, &
and £~ ! will have the same distribution.

To simulate the observed ¢ distribution, we should
take into account photometric noise and eccentricities.
Photometric noise typically introduces a relative uncer-

tainty of ~ 1% in a duration measurement: ogy =~
Taur(2r)1/2 /SN (Carter et al. 2008). We add a gaussian-
random deviate with this standard deviation to the sim-
ulated durations. Eccentricity has two effects on the du-
ration: (i) at a given inclination, due to a different star-
planet separation, it results in a different impact parame-
ter and transit chord and (ii) the projected orbital speed
differs from a circular orbit, as does the speed projected
on the sky plane; we model both of these effects with
Keplerian orbits with uniform-random periastron angle
w. With these effects in place, the population model as-
sumes that mutual inclinations of planetary orbits are
excited to a scale §, and eccentricities of both planets
are excited to a scale a factor n times §. That is, the
energy in the eccentricity epicycles is a certain number
times the energy in the inclination epicycles.

Both the mutual inclination and eccentricity distribu-
tions are modeled as Rayleigh distributions, such that
the Rayleigh widths are o; = § (in radians) and o, = nd.
This allows us to use a Monte Carlo method to create
simulated distributions of ¢ as a function of § and n.
To evaluate this distribution, we make 250 mock transit
systems for each observed pair of planets, where we have
taken only the pairs where both planets are detected at
S/N> 7.1, the nominal detection limit.

For each mock system we first draw the eccentricities
esinw and ecosw from Gaussian distributions of width
nd (resulting in a uniform distribution of w values and
a Rayleigh distribution of e values). We discard a trial
if either planet’s eccentricity is above 1 or if the inner
planet’s apocenter distance exceeds the outer planet’s
pericenter distance, given their period ratio — a simple
stability criterion. Step two is to draw by, uniformly
within [0, bout, max], Where bout,max is the impact param-
eter the planet would need for the total S/N of the outer
planet to drop to 7.1. This modeled S/N is taken as the
observed S/N times the square root of the ratio between
the modeled duration and the observed one. Step three is
to draw b;, from a distribution centered on boyt (Gin/@out )
(eq. [12]) and having a gaussian o = da/(R. + R,) (re-
sulting in a Rayleigh distribution of width ¢; = § in mu-
tual inclination). If |bin| > bin max, as above, this planet
would not be detected in transit. If the conditions for
acceptance are not met at each of these three steps, the
process begins anew at step one. If accepted, the mock
system’s & value contributes to the simulated £ distribu-
tion. We compare these models for the distribution of &
to the data with statistical tests.

5.2. Duration ratios: results

Let us first test the null hypothesis that planets around
the same star are sufficiently misaligned to destroy the
normalized-duration ratio signature discussed above. As-
suming their impact parameters are drawn from the same
distribution, Tgur,in/ Pj]/ 3 and Taur,out/ Polﬁ would be
distributed in the same manner, therefore their ratios
¢ and ¢! should also be from the same distribution. We
test that in figure 6, panel (a), where the null hypothe-
sis is that the black and red histograms are equivalent.
These histograms are not equal, with the center-of-mass
of € lying at a significantly larger value than ¢!, a K-S
p-value of 5 x 10715, This is the signature of planetary
orbits lying in nearly the same plane.
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Figure 6. Histograms of normalized duration ratios (equation 4).
Panel (a): the distributions of the observed ¢ and its inverse are
contrasted. If planetary orbital planes are not correlated with each
other, these distributions would be equal. Instead, the difference
in the histograms implies the inner planets have a longer duration,
i.e. a smaller impact parameter, on average. Panel (b): models of
three different typical mutual inclinations, for circular orbits, are
compared to the data, showing how these can be distinguished.
Panel (c): the best-fitting model is compared to the data. This fit
is not significantly better than the black line of panel b, as a wide
range of eccentricities acceptably fits the data.

There are potential biases that could affect this conclu-
sion. First, the outer planet’s radius is typically larger
than the inner one (perhaps due to detection limits; see
Paper I), but this would bias £ to values slightly less than
1, and we observe the opposite. Another aspect is that
the box-least squares search that found most of these can-
didates (B13) was run over a range of durations 0.003P
to 0.05P. Planets outside this range were still found,
but not with an optimal matched filter. The search al-
gorithm is less sensitive to the very shortest durations
(largest impact parameters) at long period and the very
longest durations (smallest impact parameters) at short
period. Therefore this effect should bias £ downwards,
again against the observed trend. We have not identified
other instrumental or analysis biases that could push the
distribution to £ > 1 values, as observed.

Although this test shows the observed ¢ distribution
is asymmetric, it is indeed quite broad. An ideal model
distribution consisting of perfectly coplanar and circular
systems would lie entirely above 1, due to the relation
in equation 12. Measurement error introduces additional
spread at the few-percent level; modeling this effect gives
the green curve in Figure 6, panel (b), which departs only
slightly from this ideal.

Therefore, some mutual inclination or eccentricity is
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Figure 7. Kolmogorov-Smirnov p-value for inclined and eccen-
tric systems. A region of acceptable probability lies in the range
~ 1.0° —2.2°, for the dispersion of the Rayleigh distribution of the
mutual inclination. The acceptable range of eccentricity is large,
from perfectly circular to several times equipartition with the mu-
tual inclination.

clearly needed. To model these, we computed a grid
of models (described in § 5.1) with steps of 0.002 in §
and 1 in n, and we show in figure 7 the p-value from
the K-S test for these models. The peak (best-fit) value
has a probability 0.033 and lies at § = 0.032, n = 1,
corresponding to inclinations of ~ 1.8° and eccentricities
of 0.032. The typical mutual inclination lies firmly in the
range 1.0° — 2.2°, showing that planetary systems tend
to be quite flat.

In contrast to this narrow range of mutual inclination,
the ¢ distribution can be acceptably matched (p-value
> 0.01) over a wide range of eccentricities. The geomet-
rical reason for the different dependence on inclination
and eccentricity is that if inclinations change by 1%, the
duration may change by order unity, but if eccentricities
change by 1%, the duration usually changes by ~ 1%.
Good fits to the £ distribution can be obtained both for
circular orbits and for eccentricities in energy equipar-
tition with the mutual inclination (i.e., 0. = 20;), and
indeed up to several times equipartition. Therefore the
& distribution is insensitive to the eccentricity distribu-
tion, and our conclusion about mutual inclination does
not depend on knowing the eccentricity distribution pre-
cisely.

Our conclusion that Kepler’s planetary systems are flat
supports our inference of Paper I, which used the number
of planets of each multiplicity to show that the mutual in-
clination in systems is typically just a few degrees. How-
ever, it was possible that mutual inclinations are larger
than 10°, provided that planetary systems have many
more planets (2 10) than expected. To rule out this
latter possibility, the Radial-Velocity (RV) sample was
used to place limits on planet multiplicity (Tremaine &
Dong 2012; Figueira et al. 2012), breaking the degener-
acy and preferring small planetary inclinations of just a
few degrees. This conclusion requires significant overlap
between the current RV sample and the Kepler sample,
which has not been independently demonstrated. Hav-
ing reached the same conclusion from the Kepler sample
alone, we have increased confidence that most planetary
systems within 0.5 AU of their stars are flat.

By simulating all planet configurations and only com-



Architecture of Kepler Multiplanets 11

paring the doubly-transiting simulated pairs to the data,
our determination of o; is unbiased. However, a caveat
is that the distribution of inclinations may not be well-
characterized by a single Rayleigh distribution, and high-
inclination components of the actual distribution would
contribute less statistical weight because transits of both
planets would be seen only rarely. Thus, as with all ap-
plications of parameter-fitting, the limits given on the
parameter o; hold only to the extent that a member of
the family of model distributions describes the actual dis-
tribution. Another caveat is that we have used all pairs
of planet candidates throughout, such that the N-planet
systems are represented more, by a total of N(N —1)/2
pairs. Therefore the architectures of larger-N systems
carry more statistical weight in this analysis.

6. COMPARISON TO THE SOLAR SYSTEM

We have described the architecture of a set of multi-
planet systems whose gross structure is completely alien
to our Solar System. The sample is dominated by plan-
ets with radii between 1 — 4 Rg whose orbital periods
are of order 10 days; no such planets exist in the So-
lar System. A striking feature of the Solar System is
its extreme coplanarity. This property of exoplanet sys-
tems has only started being assessed (Paper I; Tremaine
& Dong 2012; Figueira et al. 2012). Perhaps no obser-
vation is more crucial for theories of the Solar System’s
formation in a gaseous disk encircling the proto-Sun. For
exoplanetary systems detected by radial velocity, there is
typically no information on the inclination of individual
planets, and only weak information (from stability, gen-
erally) available regarding their inclination with respect
to one another. With Kepler’s transit discoveries, we now
have a statistical sample to assess the degree of flatness
of extrasolar systems.

To make a quantitative comparison, we computed the
Rayleigh distribution of the mutual inclinations for the
Solar System planets a Bayesian technique analogous to
that used in § 3.4. We used a uniform prior on o;, and
since the allowed region is in each case rather narrow, the
results are not sensitive to this prior. There are a total of
N(N —1)/2 = 28 pairs for the N = 8 planets. We used
the Keplerian elements at J2000 provided by the JPL So-
lar System Dynamics website to find the set of 28 mutual
inclinationsQO.o The 95% credible interval was found to be
o; = 2.5°| 708, However, secular evolution changes the
orbital orientations on 10° yr timescales. Using MER-
CURY, we computed the orbits of the 8 planets for 3
Myr starting at the current epoch, determining their 28
mutual inclinations as a function of time. The best-fit
o; is 3.1° on average, and varies in time with a root-
mean square (RMS) of 0.4°. So the current epoch has a
Rayleigh inclination which is 1.50 lower than the long-
term average. The planet Mercury is well-known as an
outlier in inclination, and when this exercise is repeated
just with the other 7 planets, the result is o; = 1.4° \fgéz
at the current epoch, and a time-averaged value 2.0° with
an RMS of 0.3° on a 3 Myr timescale. These values are
very similar to the values that we have found for the pop-
ulation of multiply transiting exoplanet systems observed
by Kepler (o; = 1.0° — 2.2°).

20 http://ssd.jpl.nasa.gov

From this 3-Myr integration of the Solar System plan-
ets, we also investigated eccentricities, analogously to
mutual inclinations. The time-averaged Rayleigh width
is 0 = 0.052 (compare o; = 0.054 radians) for all
8 planets and a time-averaged o. = 0.033 (compare
o; = 0.036 radians) when excluding the planet Mercury.
The fact that eccentricity and inclination scale together
in the Solar System may extend to exoplanetary systems
like those Kepler has discovered. Our mutual inclina-
tion results (§ 5) suggest that their eccentricities may
be small (e ~ 0.03), although our transit measurements
have not yet probed eccentricity this sensitively. The ra-
dial velocity technique has also discovered many systems
of 5—30Mg planets (Mayor et al. 2011), but their eccen-
tricities have not yet been measured this precisely either.
This prediction of small eccentricity for small planets is
in contrast to the giant exoplanets found to date, but it
may continue the trend that lower mass exoplanets have
lower eccentricities (Wright et al. 2009).

Finally, we may ask whether the planets of the So-
lar System show any resonant structure similar to the
Kepler planets. The only pair close to a first-order
mean-motion resonance is Uranus (4.0Rg) and Neptune
(3.9Rg), whose period ratio is 1.96. These values lie near
the border of the gap in panel c of figure 4. As the origin
of this gap remains unclear, it is hard to know whether
Uranus and Neptune’s period ratio has physical signifi-
cance.

7. CONCLUSION

Using the B13 catalog, which more than doubles the
numbers of multiple planet candidate systems compared
to the study of Paper I, we have investigated the architec-
ture of planetary systems anew. We have shown that the
candidates avoid close orbital spacings that would desta-
bilize the orbits of real planets. From this fact we derived
a likely fraction of 85 — 99% of the candidate pairs are
really pairs of planets orbiting the same star. We found
that most planetary systems are not resonant, but the
distribution of planet period ratios does show interesting
clumping just wide of first-order resonances 2:1 and 3:2,
and a gap just interior to them. It is not yet clear how
formation or subsequent evolution produces this pattern.

The flatness of planetary systems, described based on
multiplicity statistics by Paper I, was revisited here based
on duration ratio statistics. We affirm and strengthen
the result that pairs of planets tend to be well aligned,
to within a few degrees. This new constraint uses the
Kepler data alone and so is a more direct measurement
than had been obtained previously.
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Figure 8. The value of ¢ as a function of the period ratio of two planets. If only first order resonances are studied, then one uses (1,1
(solid, blue) where all period ratios are assigned to a neighborhood of a first-order resonance. If one simultaneously considers first and
second-order resonances, then (2,1 (long-dashed, red) and (2,2 (short-dashed, red) are used where all period ratios are assigned either to the
neighborhood of a first or a second order resonance (these are {1 and (2, respectively, of the main text). Finally, if one wishes to partition
the real line into neighborhoods around only second order resonances, then n =1 and j = 2 and the result is (1,2, the thin solid curves.

APPENDIX
REGARDING THE RESONANCE VARIABLE (¢

In this appendix we discuss the quantity ¢ in more detail. The general form of ¢ is given by:

Cnyj=(n+1) (le — Round {%]) , (A1)
where P is the ratio of the periods of the two planets (always greater than unity), j is the resonance order under
consideration, and n is the number of resonance orders that are simultaneously being considered. This last statement
means that the real line is partitioned into non-overlapping neighborhoods around MMRs up to order n. The boundaries
between resonances are always defined by resonances of the lowest order not considered. The motivation for defining
this quantity was to provide a means of treating all resonances under study equally, even though their neighborhoods
differ in size (approaching zero as the index j — 00).

For example, in Paper I and in § 4 of this work, both first and second order resonances are considered (n = 2), and
the quantities ¢; and (2 (here (21 and (2,2) are given by

G21=3 (731_1 — Round {731_1}) (A2)

and

C22=3 <732—1 — Round [732_1}) , (A3)

where (7 is applied to those planet pairs that fall into the neighborhoods of the first order resonances and (s is
applied to the pairs in the neighborhoods of the second order resonances. The boundaries between these resonance
neighborhoods are defined by the intermediate third-order resonances, the lowest-order resonances not considered.
Suppose, however, that one wanted to assign all period ratios into the neighborhood of a first order resonance only,
without considering second order resonances. Then the proper quantity is (i1, which is contrasted to the (37 in
figure 8. For our sample, choosing such a broad resonance neighborhood includes possible features in the continuum
or near the second or higher order resonances and hence dilutes the power of the statistical tests that we employ here.
However, situations may arise where a selection criteria, such as examining only higher-index first order resonances
such as 4:3, 5:4, etc., may justify the use of (; ;. Therefore we recommend it for future work with Kepler, as smaller
planets are more likely to be found in such tightly packed configurations, and a longer baseline will have the sensitivity
to see them. To study only second order resonances (including 4:2 and 6:4), one would use the (7 » variable. Figure 8
contrasts these different choices for mapping period ratios into a space more suitable for studying resonances.
Facilities: Kepler.
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Table 1
Characteristics of Planets in Systems with Multiple Transiting Planets

KOI # P T0 [BID]  Tyur R, S/N M, R. P/P_  A_
(days) —2454900.0  (hr)  (Rg) (Me) (Ro)
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70.02 3.696122 67.50026 2.4981 192 1345 0091 0.94
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157.05 118.363821  220.31606  9.5398 3.43  54.0 0.98 1.06  2.53526

Do —
Bo~go
A RN

Note. — Only a portion of this table is shown (one system for each multiplicity), as guidance of its
form and content; the entire table is available online. Within each system, the planets are ordered by
increasing period. The P/P_ and A_ columns refer to the spacing between this planet and the next
closest planet. The decimal part of KOI numbers (“.017, “.02”, etc.) refers to the order of discovery.
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