Everything for today is posted under day 4 of: www.astroblend.com/ba2016

- * So far we have done the 2-Body problem:
 - * analytical vs. numerical
 - * importance of timestep
 - * how to check the accuracy of our simulations (conservation of E, L)
 - * order of solvers (Euler vs. Hermite)
 - * thought about how to deal with code that is getting more and more complex
- * Started doing some multi-body problems! (N-Body) saw how hard it is to make a stable system... got some hints that Kepler systems are pretty stable...
- * Also smashed some planets:

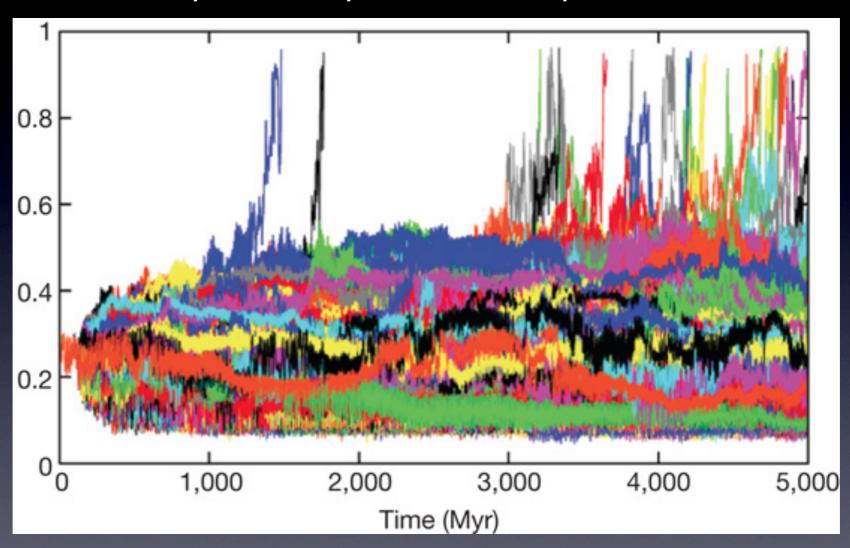
Super Planet Crash! http://www.stefanom.org/spc/

Bonus - dealing with alien overlords: http://save-point.herokuapp.com/dashboard/users.php

Everything for today is posted under day 4 of: www.astroblend.com/ba2016

- * So far we have done the 2-Body problem:
 - * analytical vs. numerical
 - * importance of timestep
 - * how to check the accuracy of our simulations (conservation of E, L)
 - * order of solvers (Euler vs. Hermite)
 - * thought about how to deal with code that is getting more and more complex

Started doing some multi-body problems! (N-Body) - saw how hard it is to make a stable system... got some hints that Kepler systems are pretty stable...


* Also smashed some planets:

Super Planet Crash! http://www.stefanom.org/spc/

Bonus - dealing with alien overlords: http://save-point.herokuapp.com/dashboard/users.php

Everything for today is posted under day 4 of: www.astroblend.com/ba2016

eccentricity of Mercury for 2500 nearby initial conditions

Laskar & Gastineau (2009)

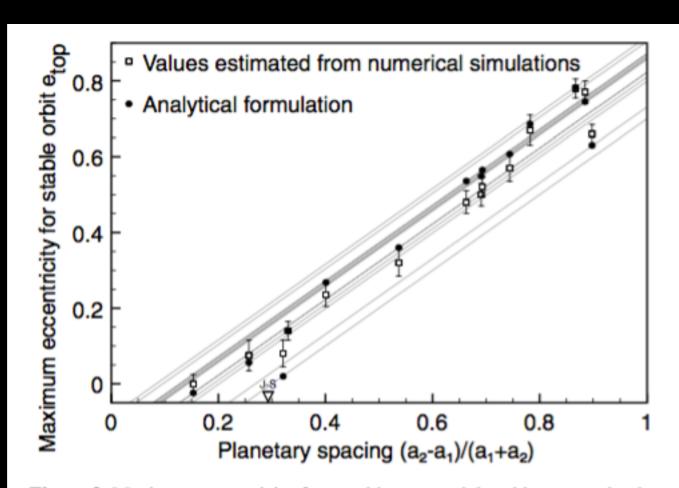
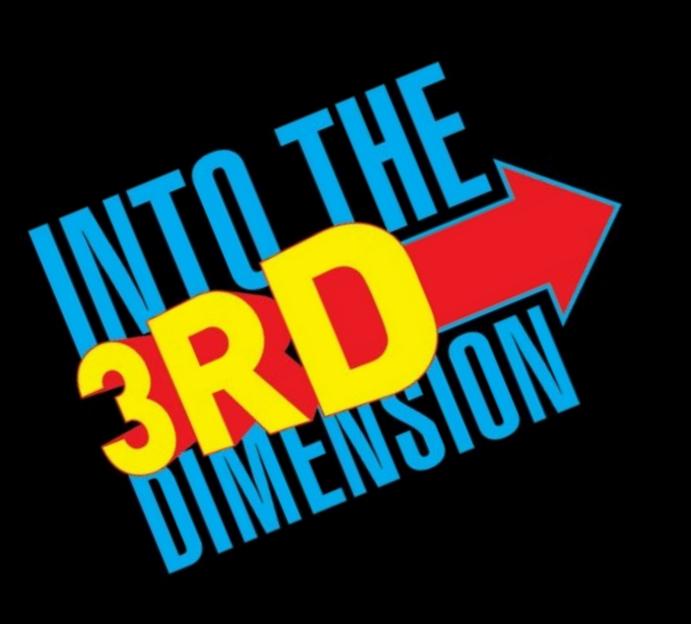



Figure 3. Maximum eccentricity for a stable test particle orbit at a semimajor axis $(a_1 + a_2)/2$ between two existing planets. The unfilled squares represent estimates of e_{top} with their uncertainties, and the filled circles and gray lines represent values of e_{top} computed from Equation (10) for various planetary systems (eight systems listed in Table 1 plus six additional systems for a larger sample). For comparison, the inverted triangle shows the planetary spacing between Jupiter and Saturn (note that we only considered two-planet systems with circular orbits, and our results may not be applicable to systems with greater multiplicity of planets or non-circular orbits).

Everything for today is posted under day 4 of: www.astroblend.com/ba2016

Start thinking about a system you want to visualize in more detail...

** check out day 4 on website for Adventures **

Teaser Trailer

https://skfb.ly/QHwx